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A kinetic picture is presented from which follow the time-dependent Boltzmann equation in the relaxation-
time approximation and an exact solution in the form of a kinetic integral. As a special case of the latter, 
one obtains Chambers' integral solution of the time-independent equation. Confusion in the literature 
regarding solutions of the exact versus linearized equations is clarified. 

w E start with the following equation 

dt 
/(*, t+dt) = f(9-tft9 t)+-—ZP(9)-f(9,tn, (1) 

no) 
where f(g,t) is the probability at time t of finding a 
particle at point p = k , r in phase space, i.e., with wave 
number k and position r. Along with the dynamical 
law of motion, 

g=k,t = ( ? / f t ) [E(r ,0+v(k)XB(r,01 v(k) , (2) 

the first two terms of (1) reflect particle motion along a 
deterministic trajectory. The last term follows from a 
kinetic picture in which, in every time interval r, a 
collision occurs which removes a particle from the 
probability distribution / and scatters it into the special 
equilibrium distribution f (presumed known). Equa
tion (1) immediately yields the time-dependent Boltz
mann partial differential equation in the relaxation 
approximation: 

dfdf (f-f) 
1 9 = . 

dt dp r 
(3) 

However, if we fix attention on a point in phase space 
which moves along a characteristic trajectory defined by 

d9=9dt, (4) 

then the / corresponding to this moving point changes 
only via collisions; in fact, we obtain the ordinary 
differential equation 

df/dt=-(f~f)/r, (5) 

which is readily integrated from time f to a later time 
t to yield 

/ (e ,0 = / ( e ' / ) e x p f - / — J 

/ • ' /W') / [ldt"\ (6) 

In this equation, the points p", t", and the end point p, /, 
form the trajectory determined by the initial point p', f, 

* This work performed under the auspices of the U. S. Atomic 
Energy Commission. 

and by (2) and (4); r " is a shorthand notation for 
T(9"). Equation (6) is a solution of (3) in the sense that, 
given the initial probability distribution /(p,0> the 
determination of f(9,t) is reduced to quadrature. 

If we let t' recede into the infinite past, f(g,t) loses 
its dependence on the initial condition and approaches 
the steady-state distribution 

*(&) = -L^<-f^- (7) 

Equation (7) was originally suggested by Chambers1 and 
has been verified (for a special case) by Budd2 and, in 
general, by Tavernier,3 who show directly that <£ is 
indeed an exact solution of the time-independent Boltz
mann equation. 

To clarify a certain confusion in the literature regard
ing solutions of the linearized Boltzmann equation, we 
now integrate (6) and (7) by parts. After rearranging, 
and defining df and 53> as deviations from equilibrium, 
i.e., 8f^f—f and 5$=<S>—/°, we obtain 

r'df / r1 dt"\ -L^"/,)a!\-L-r" (6*» 
and 

/•« df / r* dt"'\ 
« * ( » ) = - / — ( e V ) e x p ( - / — )dt". (7a) 

J_oo dt \ J t" T ' 

Since f° depends upon t" only through p", and upon p" 
only through the energy 8 (which is a function of k) 
and the temperature T (which is a function of r) and 
the chemical potential (which is a function of T and 
the particle density n), we may write 

df dfdS . dfdT ^ dfdn t 

dt 68 dk dT dt dn dr 

/df 
= v • ( — qE-\—-V TH Vn 

\d8 dT 

df 
dn • ) • 

(8) 

1 R. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952). 
2 H. Budd, Phys. Rev. 127, 4 (1962). 
3 J. Tavernier, Compt. Rend. 255, 120 (1962). 
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Heine4 and Suzuki5 consider the equation which one 
would obtain from (6a) by inserting (8), setting 
V T = Vn=8f(e'/) = 0, and removing the factor df°/dS 
from under the integral sign. Clearly, the last operation 
leaves one with a solution of the linearized time-de
pendent Boltzmann equation, but not of the exact 
equation. Heine claims to prove that it is a solution of the 
exact equation, but his proof contains an error; however, 

4 V. Heine, Phys. Rev. 107, 431 (1957). 
5 H . Suzuki, J. Phys. Soc. Japan 17, 1542 (1962). 

I. INTRODUCTION 

IT has been shown1 that the analytic property of the 
Regge parameters, together with the unitarity con

dition, constitutes a set of equations for determining 
these parameters. However, many features of this set 
of equations, in particular, the question of what we 
should put in and what we can get out of them, were 
not well understood at that time. Neither was it realized 
then that inelastic two-particle intermediate states in 
the unitarity condition can be included, without the 
complication of solving some coupled integral equations. 

In this paper, we shall show: (1) that the equations, 
with all two-particle intermediate states in the unitarity 
condition taken into account, can be reduced to a single 
integral equation which has Ima (/) as the only unknown 
variable,2 and can be solved numerically—results will 
be reported in a forthcoming paper3; (2) that the param
eters of this equation will be completely specified if one 
subtraction constant for a (t) and for each of the residue 
functions r# (0> as well as the location of zeros for fij(i), 
are supplied; (3) that this integral equation has a unique 
solution if some conditions on the subtraction constants 
are satisfied. 

These conclusions show, firstly, that the number of 
subtractions is not arbitrary. If we put too many re-

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963). 
2 The method to achieve this was shown to the author by F. 

Zachariasen. 
3 H. Cheng and D. Sharp (to be published). 

if df°/d§ is put back under the integral sign, then his 
proof goes through verbatim. Suzuki uses this approxi
mate equation to discuss boundary value problems, and 
provides references to other recent work based on this 
equation. Budd2 shows (for a special case) that the 
equation obtained from (7a) by inserting (8), setting 
VT=Vn=0, and removing the factor df°/dS from 
under the integral sign is a solution of the linearized 
time-independent Boltzmann equation, but not of the 
exact equation. 

strictions on the Regge parameters by making too many 
subtractions, no solution for Ima(t) would exist, while 
if we make too few subtractions, the solution for Ima (/) 
would not be unique. Secondly, the location of the zeros 
of Tij(i) cannot be determined dynamically, but have 
to be supplied as input parameters. Therefore, the fact 
that fij(t) of the Pomeranchuk trajectory vanishes at 
the point ap=0 does not follow as a dynamical conse
quence of our equation, but is a boundary condition 
itself. Whether the zeros of fij(t) can be determined, 
once the approximate unitarity condition used here is 
replaced by the exact form, still awaits investigation. 
However, it is a consequence of analyticity and factori
zation for fijit) that all r%j{t) of the same trajectory 
should have the same zeros, if the possibility of double 
zero is ignored. The factorization law gives4 

rij(t)rji(t) = ru(t)rjj(t), 

and if time-reversal invariance holds, 

^i (0 = ^ ( 0 , 
then 

^(0 = [r«(0fyy(0]1/a. (1) 
If m(t) has a first-order zero at z0 and fjj(t) does not, 
then £o is a square-root branch point for r#(0 , in con
tradiction of the analytic property of r# (0- Therefore, 
we should put in the same zeros for all fij{t) in the dy
namical equations. 

4 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V, N, Gribov 
and I. Ya. Pomeranchuk, ibid. 8, 346 (1962). 
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The dynamical equations for the Regge parameters in the relativistic, many-channel case are reduced 
into a single integral equation for Ima(t), which is convenient to solve numerically. The solution of this 
integral equation is shown to exist and to be unique, after one subtraction constant for each of the functions 
a(t) and n;(0> and the location of zeros of the residue functions ra(t) are supplied, provided that some 
conditions on the subtraction constants are satisfied. 


